skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tassara, Santiago"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the behavior of chalcophile elements during the evolution of arc magmas is critical to refining models for the formation and distribution of porphyry copper deposits used in mineral exploration. Because magmas in continental arcs undergo copper depletion during their early differentiation, a widely held hypothesis posits that the removed copper is locked at the base of the crust in copper-rich cumulates that form due to early sulfide saturation. Testing this hypothesis requires direct evidence for such copper-rich reservoirs and a comprehensive understanding of the mechanisms driving sulfide saturation. Interaction between oxidized magmas and reducing crustal material in island arcs has been shown to be an efficient process causing sulfide saturation. However, the extent to which crustal assimilation impacts the flux of chalcophile elements during magmatism in thick continental arcs remains to be established. Here, we provide a deep perspective into these problems by studying a suite of subarc cumulate rocks from the Acadian orogen, New England (USA). These cumulates record the imprint of subduction zone magmatism and represent the residues left behind during the genesis of intermediate to evolved Acadian magmas (ca. 410 Ma). We find that the most primitive Acadian cumulates are enriched in copper (up to ~730 µg g–1) hosted by sulfide phases, providing direct evidence for the formation of lower crustal copper-rich reservoirs. The Acadian cumulates reveal a wide range of δ34S values, from –4.9‰ in the ultramafic rocks to 8‰ in the most evolved mafic rocks. The negative δ34S values observed in the most primitive and copper-rich cumulates (avg –3‰) reflect the assimilation of isotopically light sulfur from surrounding sulfidic and graphite-bearing metasedimentary rocks (δ34S of –19 to –12‰), whereas the more evolved cumulates with positive δ34S signatures may have formed from different magma batches that experienced less sediment assimilation. The assimilation of these reducing metasedimentary rocks caused a critical drop in oxygen fugacity (~DFMQ –2.5 to –1.9; FMQ = fayalite-quartz-magnetite buffer) in the evolving magmas, ultimately leading to extensive sulfide saturation and the consequent formation of copper-rich subarc cumulates. Assimilation-driven sulfide saturation may be a common process at the root of thickened arc crusts that triggers the formation of lower crustal copper-rich reservoirs, which play a pivotal role in the fate of copper during arc magmatism. Thus, deeply buried reducing metasedimentary crustal material at the base of continental arcs can act as a barrier to the magmatic flux of chalcophile elements and may play a crucial role in the genesis and distribution of porphyry copper deposits. 
    more » « less
  2. Abstract Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H2, CH4and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation. 
    more » « less